
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013
ISSN: 2320 - 8791
www.ijreat.org

1

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

Decentralized Information in Cloud Computing using

Distributed Technique

A.Senthamarai Selvan1, S.Kishore Verma2 and S.Suresh3

1,2,3Assistant Professor, Department of Computer Science and Engineering,

C.Abdul Hakeem College of Engineering and Technology, Melvisharam, Vellore.

Abstract
A cloud computing is highly scalable services over the internet.

The cloud services are that users’ data are usually processed

remotely in unknown machines that users do not own or operate.

The new emerging technology, users’ fears of losing control of

their own data (particularly, financial and health data) can become

a significant barrier to the wide adoption of cloud services. In this

paper, we propose a novel approach of cloud information

accountability (CIA) framework in distributed way to keep track

of the actual usage of the users’ data in the cloud. The CIA

framework provides end-to-end accountability in a highly

distributed fashion. One of the main innovative features of the

CIA framework lies in its ability of maintaining lightweight and

powerful accountability that combines aspects of access control,

usage control and authentication. We influence the JAR

programmable capabilities to both create a dynamic and traveling

object, and to ensure that any access to users’ data will trigger

authentication and automated logging local to the JARs. To

strengthen user’s control, we also provide distributed auditing

mechanisms.

Key words: Cloud computing, accountability, distributed.

1. Introduction

Cloud computing presents a new way to supplement the

current consumption and delivery model for IT services

based on the Internet, by providing for dynamically

scalable and often virtualized resources as a service over

the Internet. While enjoying the convenience brought by

this new technology, users also start worrying about losing

control of their own data. The data processed on clouds

are often outsourced, leading to a number of issues related

to accountability, including the handling of personally

identifiable information conventional access control

approaches developed for closed domains such as

databases and operating systems, or approaches using a

centralized server in distributed environments, are not

suitable, due to the following features characterizing cloud

environments. Unlike privacy protection technologies

which are built on the hide-it-or-lose-it perspective,

information accountability focuses on keeping the data

usage transparent and track able.

 Our proposed CIA framework provides end-to-end

accountability in a highly distributed fashion. The design

of the CIA framework presents substantial challenges,

including uniquely identifying CSPs, ensuring the

reliability of the log, adapting to a highly decentralized

infrastructure, etc. Our basic approach toward addressing

these issues is to leverage and extend the programmable

capability of JAR (Java ARchives) files to automatically

log the usage of the users’ data by any entity in the cloud.

Our experiments demonstrate the efficiency, scalability

and granularity of our approach. In addition, we also

provide a detailed security analysis and discuss the

reliability and strength of our architecture in the face of

various nontrivial attacks, launched by malicious users or

due to compromised Java Running Environment. We have

made the following new contributions. First, we integrated

integrity checks and oblivious hashing (OH) technique to

our system in order to strengthen the dependability of our

system in case of compromised JRE. We also updated the

log records structure to provide additional guarantees of

integrity and authenticity. Second, we extended the

security analysis to cover more possible attack scenarios.

The rest of the paper is organized as follows: Section 2

discusses related work. Section 3 lays out our proposed

CIA framework and Sections 4 describe the detailed

algorithms for automated logging mechanism and auditing

approaches, respectively. Section 5 presents a security

analysis of our framework, followed by an experimental

study in Section 6. Finally, Section 7 concludes the paper.

2 Related Works

The review related works addressing the privacy and

security issues in the cloud. Cloud computing has raised a

range of important privacy and security issues [2], [3], [4].

Such issues are due to the fact that, in the cloud, users’

data and applications reside at least for a certain amount of

time on the cloud cluster which is owned and maintained

by a third party. Concerns arise since in the cloud it is not

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013
ISSN: 2320 - 8791
www.ijreat.org

2

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

always clear to individuals why their personal information

is requested or how it will be used or passed on to other

parties. Their basic idea is that the user’s private data are

sent to the cloud in an encrypted form, and the processing

is done on the encrypted data. The output of the

processing is de obfuscated by the privacy manager to

reveal the correct result. However, the privacy manager

provides only limited features in that it does not guarantee

protection once the data are being disclosed. To the best of

our knowledge, the only work proposing a distributed

approach to accountability is from Lee and colleagues [6].

The authors have proposed an agent-based system specific

to grid computing. Distributed jobs, along with the

resource consumption at local machines are tracked by

static software agents.

3. Cloud Information Accountability

We present an overview of the Cloud Information

Accountability framework and discuss how the CIA

framework meets the design requirements discussed in the

previous section. The Cloud Information Accountability

framework proposed in this work conducts automated

logging and distributed auditing of relevant access

performed by any entity, carried out at any point of time at

any cloud service provider. It has two major components:

logger and log harmonizer.

3.1 Major Components

There are two major components of the CIA, the first

being the logger, and the second being the log harmonizer.

The logger is the component which is strongly coupled

with the user’s data, so that it is downloaded when the data

are accessed, and is copied whenever the data are copied.

The logger is strongly coupled with user’s data (either

single or multiple data items). Its main tasks include

automatically logging access to data items that it contains,

encrypting the log record using the public key of the

content owner, and periodically sending them to the log

harmonizer. The error correction information combined

with the encryption and authentication mechanism

provides a robust and reliable recovery mechanism,

therefore meeting the third requirement the log harmonizer

is also responsible for handling log file corruption.

3.2 Data Flow

The overall CIA framework, combining data, users, logger

and harmonizer is sketched in Fig. 1. At the beginning,

each user creates a pair of public and private keys based

on Identity-Based Encryption [7] (step 1 in Fig. 1). The

JAR file includes a set of simple access control rules

specifying whether and how the cloud servers, and

possibly other data stakeholders (users, companies) are

authorized to access the content itself. Then, he sends the

JAR file to the cloud service provider that he subscribes

to. To authenticate the CSP to the JAR (steps 3-5 in Fig.

1), we use OpenSSLbased certificates, wherein a trusted

certificate authority certifies the CSP. As for the logging,

each time there is an access to the data, the JAR will

automatically generate a log record, encrypt it using the

public key distributed by the data owner, and store it along

with the data (step 6 in Fig. 1). In addition, some error

correction information will be sent to the log harmonizer

to handle possible log file corruption (step 7 in Fig. 1). To

ensure trustworthiness of the logs, each record is signed by

the entity accessing the content.

Fig1: Overview of the cloud information accountability framework

4 Automated Logging Mechanisms

First elaborate on the automated logging mechanism and

then present techniques to guarantee dependability.

4.1 The Logger Structure

We leverage the programmable capability of JARs to

conduct automated logging. A logger component is a

nested Java JAR file which stores a user’s data items and

corresponding log files. The main responsibility of the

outer JAR is to handle authentication of entities which

want to access the data stored in the JAR file. A Java

policy specifies which permissions are available for a

particular piece of code in a Java application environment.

The outer JAR is also in charge of selecting the correct

inner JAR according to the identity of the entity who

requests the data. Each inner JAR contains the encrypted

data, class files to facilitate retrieval of log files and

display enclosed data in a suitable format, and a log file

for each encrypted item. We support two options:

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013
ISSN: 2320 - 8791
www.ijreat.org

3

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

1. PureLog. Its main task is to record every access

to the data. The log files are used for pure

auditing purpose.

2. AccessLog. It has two functions: logging actions

and enforcing access control. In case an access

request is denied, the JAR will record the time

when the request is made. If the access request is

granted, the JAR will additionally record the

access information along with the duration for

which the access is allowed.

4.2 Log Record Generation

Log records are generated by the logger component.

Logging occurs at any access to the data in the JAR, and

new log entries are appended sequentially, in order of

creation LR= <r1; . . . ; ri. Each record ri is encrypted

individually and appended to the log file. The checksum is

computed using a collision-free hash function [5]. The

component sig denotes the signature of the record created

by the server. The most critical part is to log the actions on

the users’ data. In the current system, we support four

types of actions, i.e., Act has one of the following four

values: view, download, timed access, and Location-based

access. We propose a specific method to correctly record

or enforce it depending on the type of the logging module,

which are elaborated as follows:

1. View: The entity (e.g., the cloud service

provider) can only read the data but is not

allowed to save a raw copy of it anywhere

permanently. For this type of action, the PureLog

will simply write a log record about the access,

while the AccessLogs will enforce the action

through the enclosed access control module.

Recall that the data are encrypted and stored in

the inner JAR.

2. Download: The entity is allowed to save a raw

copy of the data and the entity will have no

control over this copy neither log records

regarding access to the copy. If PureLog is

adopted, the user’s data will be directly

downloadable in a pure form using a link. When

an entity clicks this download link, the JAR file

associated with the data will decrypt the data and

give it to the entity in raw form.

3. Timed_access. This action is combined with the

view-only access, and it indicates that the data are

made available only for a certain period of time.

The Purelog will just record the access starting

time and its duration, while the AccessLog will

enforce that the access is allowed only within the

specified period of time. The duration for which

the access is allowed is calculated using the

Network Time Protocol.

4. Location-based_access. In this case, the PureLog

will record the location of the entities. The

AccessLog will verify the location for each of

such access. The access is granted and the data

are made available only to entities located at

locations specified by the data owner.

4.3 Dependability of Logs

We ensure the dependability of logs. In particular, we aim

to prevent the following two types of attacks. First, an

attacker may try to evade the auditing mechanism by

storing the JARs remotely, corrupting the JAR, or trying

to prevent them from communicating with the user.

Second, the attacker may try to compromise the JRE used

to run the JAR files.

4.3.1 JARs Availability

To protect against attacks perpetrated on offline JARs, the

CIA includes a log harmonizer which has two main

responsibilities: to deal with copies of JARs and to recover

corrupted logs. Each log harmonizer is in charge of copies

of logger components containing the same set of data

items. The harmonizer is implemented as a JAR file. The

log harmonizer is located at a known IP address.

Typically, the harmonizer resides at the user’s end as part

of his local machine, or alternatively, it can either be

stored in a user’s desktop or in a proxy server.

4.3.2 Log Correctness

It is essential that the JRE of the system on which the

logger components are running remain unmodified. To

verify the integrity of the logger component, we rely on a

two-step process:

1. We repair the JRE before the logger is launched

and any kind of access is given, so as to provide

guarantees of integrity of the JRE.

2. We insert hash codes, which calculate the hash

values of the program traces of the modules

being executed by the logger component. This

helps us detect modifications of the JRE once the

logger component has been launched, and are

useful to verify if the original code flow of

execution is altered.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013
ISSN: 2320 - 8791
www.ijreat.org

4

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

4.4 Push and Pull Mode

To allow users to be timely and accurately informed about

their data usage, our distributed logging mechanism is

complemented by an innovative auditing mechanism. We

support two complementary auditing modes: 1) push

mode; 2) pull mode. Push mode. In this mode, the logs are

periodically pushed to the data owner (or auditor) by the

harmonizer. Pull mode. This mode allows auditors to

retrieve the logs anytime when they want to check the

recent access to their own data.

4.5 Algorithms

Pushing or pulling strategies have interesting tradeoffs.

The pushing strategy is beneficial when there are a large

number of accesses to the data within a short period of

time. In this case, if the data are not pushed out frequently

enough, the log file may become very large, which may

increase cost of operations like copying data. The pushing

mode may be preferred by data owners who are

organizations and need to keep track of the data usage

consistently over time.

5. Security Discussion

Our analysis is based on a semi honest adversary model by

assuming that a user does not release his master keys to

unauthorized parties, while the attacker may try to learn

extra information from the log files. We assume that

attackers may have sufficient Java programming skills to

disassemble a JAR file and prior knowledge of our CIA

architecture. We first assume that the JVM is not

corrupted, followed by a discussion on how to ensure that

this assumption holds true.

Fig:2. Push and pull PureLog mode.

5.1 Copying Attack

The most intuitive attack is that the attacker copies entire

JAR files. The attacker may assume that doing so allows

accessing the data in the JAR file without being noticed by

the data owner. That is, even if the data owner is not aware

of the existence of the additional copies of its JAR files, he

will still be able to receive log files from all existing

copies. If attackers move copies of JARs to places where

the harmonizer cannot connect, the copies of JARs will

soon become inaccessible. This is because each JAR is

required to write redundancy information to the

harmonizer periodically.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013
ISSN: 2320 - 8791
www.ijreat.org

5

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

5.2 Disassembling Attack

Another possible attack is to disassemble the JAR file of

the logger and then attempt to extract useful information

out of it or spoil the log records in it. Given the ease of

disassembling JAR files, this attack poses one of the most

serious threats to our architecture. Since we cannot

prevent an attacker to gain possession of the JARs, we rely

on the strength of the cryptographic schemes applied to

preserve the integrity and confidentiality of the logs.

5.3 Men-in-the-Middle Attack

An attacker may intercept messages during the

authentication of a service provider with the certificate

authority, and reply the messages in order to masquerade

as a legitimate service provider. There are two points in

time that the attacker can replay the messages. One is after

the actual service provider has completely disconnected

and ended a session with the certificate authority. The

other is when the actual service provider is disconnected

but the session is not over, so the attacker may try to

renegotiate the connection.

5.4 Compromised JVM Attack

An attacker may try to compromise the JVM. To quickly

detect and correct these issues, OH adds hash code to

capture the computation results of each instruction and

computes the oblivious-hash value as the computation

proceeds. These two techniques allow for a first quick

detection of errors due to malicious JVM, therefore

mitigating the risk of running subverted JARs.

6. Performance Study

The settings of the test environment and then present the

performance study of our system.

6.1 Experimental Settings

We tested our CIA framework by setting up a small cloud,

using the Emulab tested. In particular, the test

environment consists of several OpenSSL-enabled servers:

one head node which is the certificate authority, and

several computing nodes. Each of the servers is installed

with Eucalyptus. Eucalyptus is an open source cloud

implementation for Linux-based systems. It is loosely

based on Amazon EC2, therefore bringing the powerful

functionalities of Amazon EC2 into the open source

domain.

6.2 Experimental Results

In the experiments examine the time taken to create a log

file and then measure the overhead in the system. With

respect to time, the overhead can occur at three points:

during the authentication, during encryption of a log

record, and during the merging of the logs. Also, with

respect to storage overhead, we notice that our architecture

is very lightweight, in that the only data to be stored are

given by the actual files and the associated logs.

6.2.1 Log Creation Time

In the first round of experiments, we are interested in

finding out the time taken to create a log file when there

are entities continuously accessing the data, causing

continuous logging. Results are shown in Fig. It is not

surprising to see that the time to create a log file increases

linearly with the size of the log file. Specifically, the time

to create a 100 Kb file is about 114.5 ms while the time to

create a 1 MB file averages at 731 ms. With this

experiment as the baseline, one can decide the amount of

time to be specified between dumps, keeping other

variables like space constraints or network traffic in mind.

6.2.2 Authentication Time

The next point that the overhead can occur is during the

authentication of a CSP. If the time taken for this

authentication is too long, it may become a bottleneck for

accessing the enclosed data. To evaluate this, the head

node issued OpenSSL certificates for the computing nodes

and we measured the total time for the OpenSSL

authentication to be completed and the certificate

revocation to be checked.

Fig: 3. Time to merge log files.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013
ISSN: 2320 - 8791
www.ijreat.org

6

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

6.2.3 Time Taken to Perform Logging

This set of experiments studies the effect of log file size

on the logging performance. We measure the average time

taken to grant an access plus the time to write the

corresponding log record. The time for granting any

access to the data items in a JAR file includes the time to

evaluate and enforce the applicable policies and to locate

the requested data items. In the experiment, we let

multiple servers continuously access the same data JAR

file for a minute and recorded the number of log records

generated. Each access is just a view request and hence the

time for executing the action is negligible. As a result, the

average time to log an action is about 10 seconds, which

includes the time taken by a user to double click the JAR

or by a server to run the script to open the JAR.

6.2.4 Log Merging Time

To check if the log harmonizer can be a bottleneck, we

measure the amount of time required to merge log files. In

this experiment, we ensured that each of the log files had

10 to 25 percent of the records in common with one other.

The exact number of records in common was random for

each repetition of the experiment. The time was averaged

over 10 repetitions.

Fig. 4. Size of the logger component.

6.2.5 Size of the Data JAR Files

Finally, we investigate whether a single logger, used to

handle more than one file, results in storage overhead. We

measure the size of the loggers (JARs) by varying the

number and size of data items held by them. We tested the

increase in size of the logger containing 10 content files of

the same size as the file size increases.

6.2.6 Overhead Added by JVM Integrity Checking

A investigate overhead added by both the JRE

installation/repair process, and by the time taken for

computation of hash codes. The time taken for JRE

installation/repair averages around 6,500 ms. This time

was measured by taking the system time stamp at the

beginning and end of the installation/repair. To calculate

the time overhead added by the hash codes, The number of

hash commands varies based on the size of the code in the

code does not change with the content, the number of hash

commands remain constant.

7. Conclusion

We proposed innovative approaches for automatically

logging any access to the data in the cloud together with

an auditing mechanism. Our approach allows the data

owner to not only audit his content but also enforce strong

back-end protection if needed. One of the main features of

our work is that it enables the data owner to audit even

those copies of its data that were made without his

knowledge.

References

[1]. Smitha Sundareswaran, Anna C. Squicciarini,” Ensuring

Distributed Accountability for Data Sharing in the Cloud” IEEE

Transactions on dependable and secure computing, 2012

[2]. P.T. Jaeger, J. Lin, and J.M. Grimes, “Cloud Computing and

Information Policy: Computing in a Policy Cloud,” J.

Information Technology and Politics, 2009.

[3]. T. Mather, S. Kumaraswamy, and S. Latif, Cloud Security

and Privacy: An Enterprise Perspective on Risks and Compliance

(Theory in Practice), first ed. O’ Reilly, 2009.

[4]. S. Pearson and A. Charlesworth, “Accountability as a Way

Forward for Privacy Protection in the Cloud,” Proc. First Int’l

Conf. Cloud Computing, 2009.

[5]. B. Schneier, Applied Cryptography: Protocols, Algorithms,

and Source Code in C. John Wiley & Sons, 1993.

[6]. W. Lee, A. Cinzia Squicciarini, and E. Bertino, “The Design

and Evaluation of Accountable Grid Computing System,” Proc.

29th IEEE Int’l Conf. Distributed Computing Systems (ICDCS

’09), 2009.

[7]. D. Boneh and M.K. Franklin, “Identity-Based Encryption

from the Weil Pairing,” Proc. Int’l Cryptology Conf. Advances

in Cryptology, 2001.

[8]. R. Corin, S. Etalle, J.I. den Hartog, G. Lenzini, and I. Staicu,

“A Logic for Auditing Accountability in Decentralized

Systems,” Proc. IFIP TC1 WG1.7 Workshop Formal Aspects in

Security and Trust, 2005.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013
ISSN: 2320 - 8791
www.ijreat.org

7

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

[9] B. Crispo and G. Ruffo, “Reasoning about Accountability

within Delegation,” Proc. Third Int’l Conf. Information and

Comm. Security (ICICS), 2001.

[10] Y. Chen et al., “Oblivious Hashing: A Stealthy Software

Integrity Verification Primitive,” Proc. Int’l Workshop

Information Hiding, F. Petitcolas, ed., 2003.

[11] S. Etalle and W.H. Winsborough, “A Posteriori Compliance

Control,” SACMAT ’07: Proc. 12th ACM Symp. Access Control

Models and Technologies, 2007.

